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Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that 
aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin 
modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic 
progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with 
histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the 
TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor 
prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, 
PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, 
exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained 
upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences 
in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.
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Pancreatic cancer (PC) is the fourth leading cause of cancer death in 
Western societies, and projected to be the second within a decade1. It has 
a median survival measured in months and a five-year survival of <5%. 
Advances in therapy have only achieved incremental improvements in 
overall outcome, but can provide notable benefit for undefined subgroups 
of patients. As a consequence, there is an urgent need to better under-
stand the molecular pathology of PC in order to improve patient selection 
for current treatment options, and to develop novel therapeutic strategies.

Genomic analyses of pancreatic cancer reveal a complex mutational  
landscape with four common oncogenic events in well-known  
cancer genes (KRAS, TP53, SMAD4 and CDKN2A), amongst a milieu 
of genes mutated at low prevalence. Despite this heterogeneity, onco-
genic point mutations of individual genes aggregate into core molecular 
pathways including DNA damage repair, cell cycle regulation, TGF-β 
signalling, chromatin regulation and axonal guidance2–5. Increasingly 
sophisticated analyses are revealing biologically important events with 
clinical significance, including whole-genome sequencing, which 
sub-classifies PC into 4 subtypes based on the frequency and distri-
bution of structural variation. Those termed unstable due to a large 
number of structural variants correlate with defects in DNA mainte-
nance and therapeutic responsiveness to platinum based therapies2. 
Aberrations in other features that characterize cancer genomes, includ-
ing mutational signatures6, and differential methylation7 are providing 
deeper insights into disease pathophysiology.

Here we performed a comprehensive integrated genomic analysis 
of 456 PCs and their histopathological variants using a combination 
of whole-genome and deep-exome sequencing, with gene copy num-
ber analysis to determine the mutational mechanisms and candidate 
genomic events important in pancreatic carcinogenesis. RNA expres-
sion profiles were used to define four subtypes and the different tran-
scriptional networks that underpin them. These subtypes are associated 
with distinct histopathological characteristics and differential survival. 
Genomic and epigenetic features that characterize each subtype infer 
different mechanisms of molecular evolution.

Mutational landscape of PC
Study participants were recruited and consent for genomic sequencing 
obtained through the Australian Pancreatic Cancer Genome Initiative 
(APGI; http://www.pancreaticcancer.net.au) as part of the International 
Cancer Genome Consortium (ICGC; http://www.icgc.org). The 382 
APGI group consisted of participants with primarily treatment-naive 
resected PC, which were pancreatic ductal adenocarcinoma (PDAC) 
and its variants (adenosquamous, colloid, PDAC associated with intra-
ductal papillary mucinous neoplasm (IPMN)) and a small number of 
rare acinar cell carcinomas (Supplementary Table 1). We detected 
23,538 high confidence coding mutations2,8,9, of which, 7,377 were 
verified using orthogonal approaches (Supplementary Tables 1, 2 and 
19). A total of 21,208 high confidence genomic rearrangements were 
also identified (Supplementary Tables 3 and 4)2,8. To maximize the 
power to define coding driver mutations, 74 previously published 
PC exomes3–5 were included to yield a final cohort of 456 tumours. 
OncodriverFM detected 32 significantly mutated genes (false discov-
ery rate (FDR) ≤ 0.1), 22 of which were also identified by MutsigCV2 
(Q < 0.1) and/or were supported by HOTNET2 analysis (Methods and 
Supplementary Table 5). These significantly mutated genes aggregated 
into 10 molecular mechanisms (Extended Data Fig. 1): with activating 
mutations of KRAS in 92%; disruption of G1/S checkpoint machinery 
(TP53, CDKN2A and TP53BP2) in 78%; TGF-β signalling (SMAD4, 
SMAD3, TGFBR1, TFGBR2, ACVR1B and ACVR2A) in 47%; histone 
modification (KDM6A, SETD2 and ASCOM complex members MLL2 
and MLL3) in 24%; the SWI/SNF complex (ARID1A, PBRM1 and 
SMARCA4) in 14%; the BRCA pathway (BRCA1, BRCA2, ATM and 
PALB2: 5% germline, 12% somatic); WNT signalling defects through 
RNF43 mutation (5%); and RNA processing genes, SF3B1, U2AF1 and 
RBM10 (16%). RBM10 is implicated in lung cancer10, where inactivating  
mutations influence expression of oncogenic isoforms of NUMB11. 

SF3B1 mutations in PC were aggregated at the K700E mutation hot-
spot common in myelodysplastic syndrome, breast and lung cancer12 
and presents a potential therapeutic target13. Mutations in other genes 
encoding splicing machinery: SF3A1, U2AF2, SF1 and RBM6 were also 
identified (Extended Data Fig. 2 and Supplementary Table 6).

GISTIC2 identified 50 regions of recurrent gain (43 focal, 7 chromo-
somal arms) and 73 regions of loss (61 focal, 12 chromosomal arms) 
(Supplementary Tables 7–9). These regions included known oncogenes 
MET, NOTCH1 and GATA6 and tumour suppressor genes CDKN2A, 
SMAD4, TP53, BRCA1, ARID1A, PBRM1 and SMARCA4. Integrating 
copy number and expression data identified a number of genes/ampli-
cons implicated in the progression of other cancer types that exhibited 
concordant gene expression changes (Supplementary Table 10). These 
included: amplification of MIB1, a known mediator of NOTCH sig-
nalling and pancreas development14 and the CCNE1-URI1 amplicon at 
19q12 (Extended Data Fig. 2b). CCNE1 is a marker of poor prognosis 
in ovarian, breast and lung cancers and is associated with resistance 
to platinum based therapy15. Recent small interfering RNA (siRNA) 
screening of PC cell lines provides supportive evidence for CCNE1 
amplification as an important mechanism in pancreatic carcinogenesis, 
and may represent a therapeutic opportunity using CDK inhibitors16.

DNA deamination, ectopic APOBEC activity, BRCA-deficiency and 
mismatch repair were re-affirmed as the predominant mutational mech-
anisms in PC. Chromothriptic and break-fusion-bridge related genomic 
catastrophes were uncommon (12%; Supplementary Table 11). Somatic 
LINE-1 retro-transposition of known HotL1 elements was present 
in 35% of patients17 (Supplementary Table 12). As only one of these 
events directly affected a known cancer gene (insertion into ROBO2), 
it appears unlikely that this is a major mutational mechanism in PC. 
No recurrent fusion events were detected (Supplementary Table 13).

Transcriptional networks and subtypes of PC
We used bulk tumour tissue to better understand the transcriptional 
networks and molecular mechanisms that underpin the tumour 
microenvironment. Initial unsupervised clustering of RNA-seq 
data for 96 tumours with high epithelial content (≥40%) to balance 
stromal gene expression resolved four stable classes (Fig. 1a and 
Extended Data Fig. 3). These four subtypes were also present in the 
extended set of 232 PCs using array-based mRNA expression profiles 
encompassing the full range of tumour cellularity (from 12–100%) 
(Extended Data Fig. 4). We named these subtypes: (1) squamous;  
(2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly dif-
ferentiated endocrine exocrine (ADEX) on the basis of the differential 
expression of transcription factors and downstream targets important 
in lineage specification and differentiation during pancreas develop-
ment and regeneration. Transcriptional network analysis identified 
26 coordinately expressed gene programmes representing distinct 
biological processes, 10 of which discriminated the 4 PC classes  
(Fig. 1b, Extended Data Fig. 5 and Supplementary Tables 14–16). These 
4 subtypes were associated with specific histological characteristics:  
(1) squamous with adenosquamous carcinomas (6/25 in squamous 
versus 1/71 in the rest, P = 0.0011 Fisher’s exact test);  (2) pancreatic 
progenitor and (3) immunogenic with mucinous non-cystic (colloid) 
adenocarcinomas and carcinomas arising from IPMN, which are 
mucinous (P = 0.0005); and (4) ADEX with rare acinar cell carcinomas 
(although numbers were small, both cases clustered with the ADEX 
class) (Fig. 1a). Squamous subtype was an independent poor prognostic 
factor (Fig. 1c and Supplementary Table 21).

Squamous subtype
Four core gene programmes characterized squamous tumours  
(Fig. 1b), which included gene networks involved in inflammation, 
hypoxia response, metabolic reprogramming, TGF-β signalling, 
MYC pathway activation, autophagy and upregulated expression of  
TP63∆N and its target genes. Many of these genes are highly expressed 
in the C2-squamous-like class of tumours of breast, bladder, lung and 

© 2016 Macmillan Publishers Limited. All rights reserved

http://www.pancreaticcancer.net.au
http://www.icgc.org


3  M A R C H  2 0 1 6  |  V O L  5 3 1  |  N A T U R E  |  4 9

ARTICLE RESEARCH

head and neck cancer defined in the Cancer Genome Atlas (TCGA) 
pan-cancer studies18, which was the reason we termed them squamous 
(Fig. 2a). As in these other cancer types, the pancreatic squamous sub-
type was associated with mutations in TP53 (P = 0.01) and KDM6A 
(P = 0.02), which interacts with ASCOM complex constituents MLL2 
and MLL3 (Figs 1a and 2b). Although previous immunohistochemical 
studies have identified increased TP63 expression in adenosquamous 
pancreatic tumours19, RNA-seq identified high TP63∆N expression 
and its target genes as a key feature (Fig. 2c). TP63∆N, in the presence 
of TP53 mutation, is known to regulate epithelial cell plasticity, tum-
origenicity and epithelial to mesenchymal transition in a variety of 
solid tumours20. Squamous tumours were enriched for activated α6β1 
and α6β4 integrin signalling, and activated EGF signalling, (Extended 
Data Fig. 6 and Supplementary Table 16). The squamous subtype is 
associated with hypermethylation and concordant downregulation of 
genes that govern pancreatic endodermal cell-fate determination (for 
example, PDX1, MNX1, GATA6, HNF1B) leading to a complete loss of 
endodermal identity (Fig. 2d, e and Supplementary Table 17).

Pancreatic progenitor subtype
Transcriptional networks containing transcription factors PDX1, 
MNX1, HNF4G, HNF4A, HNF1B, HNF1A, FOXA2, FOXA3 and HES1 
primarily define the pancreatic progenitor class (Extended Data Fig. 7).  
These transcription factors are pivotal for pancreatic endoderm cell-fate 
determination towards a pancreatic lineage and are linked to maturity 
onset diabetes of the young (MODY). PDX1, in particular, is critical 
for pancreas development with ductal, exocrine and endocrine cells all 
derived from embryonic progenitor cells that express PDX1 (ref. 21). 
Gene programmes regulating fatty acid oxidation, steroid hormone 
biosynthesis, drug metabolism and O-linked glycosylation of mucins 
also define pancreatic progenitor tumours. Importantly, apomucins 
MUC5AC and MUC1, but not MUC2 or MUC6, are preferentially 
co-expressed in pancreatic progenitor tumours. The expression of 
these apomucins defines the pancreatobiliary subtype of IPMN and 
is consistent with PDAC-associated IPMN clustering within this class 
(Supplementary Tables 14–16). TGFBR2 inactivating mutations were 
also enriched in this subtype (P = 0.029).

ADEX subtype
The ADEX class is defined by transcriptional networks that are impor-
tant in later stages of pancreatic development and differentiation, and 
is a subclass of pancreatic progenitor tumours. Transcriptional net-
works that characterize both exocrine and endocrine lineages at later 
stages are upregulated, rather than one or the other as is the case in 
normal pancreas development. The key networks identified include 
upregulation of: (i) transcription factors NR5A2, MIST1 (also known as 
BHLHA15A) and RBPJL and their downstream targets that are impor-
tant in acinar cell differentiation and pancreatitis/regeneration22,23; 
and (ii) genes associated with endocrine differentiation and MODY 
(including INS, NEUROD1, NKX2-2 and MAFA (Extended Data  
Fig. 8 and Supplementary Table 16)). Importantly, several patient- 
derived pancreatic cancer cell lines were enriched with gene pro-
grammes associated with the ADEX class. Moreover, these cell lines 
expressed multiple genes associated with terminally differentiated 
pancreatic tissues, including AMY2B, PRSS1, PRSS3, CEL and INS. In 
addition, the methylation pattern of ADEX tumours was distinct from 
normal pancreas and clustered with other PCs (Extended Data Fig. 9).
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Figure 1 | Molecular classes and transcriptional networks defining 
PDAC. a, Unsupervised analysis of RNA-seq identified 4 PDAC classes: 
squamous (blue); ADEX (abnormally differentiated endocrine exocrine; 
brown); pancreatic progenitor (yellow); and immunogenic (red). 
*P < 0.05, Fisher’s exact test. b, Heatmap of gene programmes significantly 
enriched in PDAC. Black dot denotes transcriptional networks showing 
highest significance for an individual class. c, Kaplan–Meier analysis of 
patient survival stratified by class.
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Immunogenic subtype
The immunogenic class shares many of the characteristics of the pan-
creatic progenitor class, but is associated with evidence of a significant 
immune infiltrate. Associated immune gene programmes included  
B cell signalling pathways, antigen presentation, CD4+ T cell, CD8+ T 
cell and Toll-like receptor signalling pathways (Extended Data Fig. 10 
and Supplementary Table 16). Enrichment analysis identified upreg-
ulated expression of genes associated with nine different immune 
cell types and/or phenotypes24 (Fig. 3a). The predominant expres-
sion profiles were those related to infiltrating B and T cells, with both 

cytotoxic (CD8+) and regulatory T cells (CD4+CD25+FOXP3+ Tregs). 
Upregulation of CTLA4 and PD1 acquired tumour immune suppres-
sion pathways in the immunogenic subtype inferred therapeutic oppor-
tunities with novel immune modulators (Fig. 3c).

Immune mechanisms in pancreatic cancer
To better define candidate molecular mechanisms active in the tumour 
microenvironment, we correlated enrichment of expression patterns 
that characterize specific immune cell populations with each gene pro-
gramme (Fig. 3a and Supplementary Tables 15, 16 and 18). Of all gene 

Figure 2 | Molecular characterization of the squamous class. a, Boxplot 
of PDAC squamous class signature scores generated using pan-cancer 
12 expression data and stratified by class. b, Mutual exclusivity plot of a 
mutated gene sub-network identified by HotNet2. c, Boxplot of TAp63 and 
TP63∆N expression levels stratified by class. d, Heatmap of differentially 

methylated genes. e, Hypermethylation of GATA6 is associated with 
the concordant down regulation of GATA6 gene expression. Pearson 
correlation and adjusted P values are as indicated. In a and c the boxplots 
are annotated by a Kruskall–Wallis P value.
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correlation significance. b, Boxplot of GP module eigengene (ME) scores 
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and CTLA4 gene signature scores stratified by class. d, e, Kaplan–Meier 
analysis comparing survival of patients having either high or low immune 
cell/phenotype signature scores. In b and c, the boxplots are annotated by a 
Kruskall–Wallis P value.
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programmes (GP), GP6, GP7 and GP8 were enriched with immune cell 
specific gene expression signatures (Fig. 3b). Specifically, GP6 and GP8 
were associated with B cell and CD8+ T cell signatures, respectively, 
with GP8 associated with the T cell co-inhibitory phenotype (Extended 
Data Fig. 10). GP7 was associated with both the macrophage signa-
ture and T-cell co-inhibition, which co-segregated with poor survival  
(Fig. 3d, e). Importantly, pathway analysis of GP7, also showed enrich-
ment for antigen processing and presentation, and Toll-like receptor 
cascade(s) including high expression of TLR4, TLR7, TLR8, PDCD1LG2 
(PD-L2) and CSF1R. The latter are known mediators of tumour associ-
ated macrophage immunosuppression and inflammation.

TP53 and TP63 modulation of squamous PDAC
Based on the association of TP53 mutation and upregulated TP63 
expression in the squamous subtype, we used cell lines derived from 
genetically engineered mouse models of pancreatic cancer (KrasG12D/+; 
Trp53fl/+; TAp63fl/fl KPC mice) to begin to unravel the functional con-
sequences of these events in defining squamous tumours. Mice with 
mutations in the DNA binding domain as compared to TP53-null ani-
mals have more aggressive disease with increased metastatic potential, 
primarily mediated through platelet-derived growth factor receptor β 
(PDGFRB)25. Analyses of transcriptome data from previous mutant 
TP53 knockdown experiments from ref. 25 showed that mutant TP53 
regulates the expression of transcriptional networks associated with 
the squamous subtype, particularly GPs 2 and 3, including PDGFRB 
(Fig. 4a, b; Supplementary Table 20). KrasG12D/+; Trp53fl/+; TAp63fl/fl  
mice have more aggressive metastatic pancreatic cancer than their 
KrasG12D/+; Trp53fl/+ counterparts and also show deregulation of GPs 
2 and 3, inferring that TAp63 plays an important role in squamous PC 

(Fig. 4c–e). Transcriptional network analysis identified additional key 
factors involved in metastasis that were upregulated in the squamous 
subtype for example, LOX26.

Transcriptomic classification of PDAC
We compared our transcriptome classification with those of 2 pre-
viously published studies that had either physically27 or virtually28 
micro-dissected tumour epithelium to define PC subtypes (Fig. 1a and 
Extended Data Fig. 9). Using their classifiers to subtype our data, 3 of 
the classes we defined directly overlap with the Collisson classifica-
tion, with the exception of the novel immunogenic subtype. We altered 
Collisson’s nomenclature to better reflect the insights into the molec-
ular pathology and candidate mechanisms that our integrated analysis 
generated. The Collisson ‘quasimesenchymal’ subtype was renamed 
‘squamous’ to reflect the molecular characteristics of squamous 
tumours across multiple tissue types, as defined by the TCGA pan- 
cancer analysis. ‘Classical’ was termed ‘pancreatic progenitor’ based 
on the prominence of transcriptional networks vital for early pancreas 
development, and the predominant discriminator from the squamous 
subtype. The Collisson ‘exocrine-like’ also contained transcriptional 
networks characteristic of committed endocrine differentiation and as 
a consequence were renamed ADEX. Although approximately 50% of 
squamous subtype tumours fell within the ‘basal’ subgroup of Moffitt 
et al.28, the remainder were composed of a mixture of other Bailey/
Collisson subtypes.

More sophisticated analyses using larger numbers of tumours 
continues to reveal novel insights into pancreatic cancer pathophys-
iology. In particular, integrated analysis of genomic, epigenomic and 
transcriptomic characteristics is generating biological insights with 
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Figure 4 | Gain of function TP53 mutations and loss of TAp63 
regulate key GPs associated with the squamous class. a, Significant GP 
enrichment of genes deregulated in KPC-mouse-derived cell lines treated 
with Trp53 specific short hairpin RNAs (shRNAs). b, Trp53 regulated 
genes enriched in either GP 2, 3 or 7. c, Sub-network of genes differentially 
expressed between KRAS Trp53fl/+ and KRAS Trp53fl/+ Trp63fl/fl cell lines. 

Node colour represents change in gene expression. d, Genes differential 
expressed between KRAS Trp53fl/+ and KRAS Trp53fl/+ Trp63fl/fl cell lines 
significantly enriched in GPs 2 and 3. e, Trp63 regulated genes enriched in  
GPs 2 and 3. In a and d, bars are annotated with significance values −log10 
(P value). In b and e, the arrows and colour represent upregulation of gene 
expression in the indicated cell types.
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potential therapeutic relevance. The increased appreciation of the role 
of the immune system in cancer development and progression has 
led to new classes of therapeutics that specifically target mechanisms 
through which the tumour evades immune destruction. Therapeutics 
that target some of these mechanisms are currently in clinical trials in 
many cancer types, including pancreatic cancer. Early clinical trial data 
suggest that, similar to most targeted therapies, patient selection will 
also be important for drugs that target the immune system. The novel 
immunogenic subtype of pancreatic cancer is characterized by specific 
mechanisms that can potentially be targeted using immune modulators, 
and testing in clinical trials is encouraged.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Human research ethical approvals. APGI: Sydney South West Area Health 
Service Human Research Ethics Committee, western zone (protocol number 
2006/54); Sydney Local Health District Human Research Ethics Committee 
(X11-0220); Northern Sydney Central Coast Health Harbour Human Research 
Ethics Committee (0612-251M); Royal Adelaide Hospital Human Research Ethics 
Committee (091107a); Metro South Human Research Ethics Committee (09/
QPAH/220); South Metropolitan Area Health Service Human Research Ethics 
Committee (09/324); Southern Adelaide Health Service/Flinders University 
Human Research Ethics Committee (167/10); Sydney West Area Health Service 
Human Research Ethics Committee (Westmead campus) (HREC2002/3/4.19); 
The University of Queensland Medical Research Ethics Committee (2009000745); 
Greenslopes Private Hospital Ethics Committee (09/34); North Shore Private 
Hospital Ethics Committee. Johns Hopkins Medical Institutions: Johns Hopkins 
Medicine Institutional Review Board (NA00026689). ARC-Net, University of 
Verona: approval number 1885 from the Integrated University Hospital Trust 
(AOUI) Ethics Committee (Comitato Etico Azienda Ospedaliera Universitaria 
Integrata) approved in their meeting of 17 November 2010 and documented by the 
ethics committee 52070/CE on 22 November 2010 and formalized by the Health 
Director of the AOUI on the order of the General Manager with protocol 52438 
on 23 November 2010. Ethikkommission an der Technischen Universität Dresden 
(Approval numbers EK30412207 and EK357112012).
Patient material acquisition and extraction. Samples were acquired through the 
Australian Pancreatic Cancer Genome Initiative (APGI) as part of the International 
Cancer Genome Consortium (ICGC). Informed consent was obtained from all 
subjects. Tissue dissection of primary material, RNA and DNA extraction was 
performed using previously published methods2. Tumour cellularity was esti-
mated for each sample using a combination of qPure analysis of high-density 
SNP profiles and KRAS amplicon sequencing2. Primary tumours (n = 342) and 
41 patient-derived cell lines (representing low cellularity tumours) (Supplementary 
Table 1) underwent whole genome sequencing when tumour cellularity was >40% 
(mean coverage 75×, n = 179), or deep-exome sequencing (mean coverage: 400×, 
n = 204) for samples with a cellularity of 12–40%.
Exome library preparation. Exome libraries were generated using the Illumina 
Nextera Rapid Capture Exome kit (Illumina, Part no. FC-140–1003) according to 
the standard manufacturer’s protocol (part no. 15037436 Rev. A February 2013), 
except they were made in an automated high-throughput fashion using Perkin 
Elmer’s Sciclone G3 NGS Workstation (Product no. SG3-31020-0300). Then 50 ng 
of gDNA was used as input for tagmentation followed by 10 cycles of PCR to 
produce sufficient library for exome capture. A total of 500 ng of each library was 
pooled as a 12-plex reaction for capture using Illumina’s Nextera Exome Oligo 
set. Following two rounds of capture, samples were finally subjected to 10 cycles 
of PCR to produce exome libraries ready for sequencing. Prior to sequencing, 
exome libraries were qualified via either the Perkin Elmer LabChip GX with the 
DNA High Sensitivity LabChip kit (Perkin Elmer, Part no. CLS760672), or the 
Agilent BioAnalyzer 2100 with the High Sensitivity DNA Kit (Agilent, Part no. 
5067–4626). Quantification of libraries for clustering was performed using the 
KAPA Library Quantification Kit - Illumina/Universal (KAPA Biosystems, Part 
no. KK4824) in combination with the Life Technologies Viia 7 real time PCR 
instrument.
Whole-genome library preparation. Whole-genome libraries were generated 
using either the Illumina TruSeq DNA LT sample preparation kit (Illumina, Part 
no. FC-121–2001 and FC-121–2001) or the Illumina TruSeq DNA PCR-free LT 
sample preparation kit (Illumina, Part no. FC-121–3001 and FC-121–3002) accord-
ing to the manufacturer’s protocols with some modifications (Illumina, Part no. 
15026486 Rev. C July 2012 and 15036187 Rev. A January 2013 for the two different 
kits respectively). For the TruSeq DNA LT sample preparation kit, 1 μg of gDNA 
was used as input for fragmentation to ~300 bp, followed by a SPRI-bead clean up 
using the AxyPrep Mag PCR Clean-Up kit (Corning, Part no. MAG-PCR-CL-250). 
After end-repair, 3′ adenylation and adaptor ligation, the libraries were size- 
selected using a double SPRI-bead method to obtain libraries with an insert size 
~300 bp. The size-selected libraries were subjected to 8 cycles of PCR to produce 
the final whole-genome libraries ready for sequencing. For the TruSeq DNA PCR-
free LT sample preparation kit, 1 μg of gDNA was used as input for fragmentation 
to ~350 bp, followed by an end-repair step and then a size-selection using the 
double SPRI-bead method to obtain libraries with an insert size ~350 bp. The size- 
selected libraries then underwent 3′ adenylation and adaptor ligation to produce 
final whole genome libraries ready for sequencing. Prior to sequencing, whole- 
genome libraries were qualified via the Agilent BioAnalyzer 2100 with the High 
Sensitivity DNA Kit (Agilent, Part no. 5067–4626). Quantification of libraries for 
clustering was performed using the KAPA Library Quantification Kit - Illumina/
Universal (KAPA Biosystems, Part no. KK4824) in combination with the Life 
Technologies Viia 7 real time PCR instrument.

Total RNA library preparation. RNA-Seq libraries were generated using the 
Illumina TruSeq Stranded Total RNA LT sample preparation kit (with Ribo-
Zero Gold) (Illumina, Part no. RS-122–2301 and RS-122–2302), according to 
the standard manufacturer’s protocol (Part no. 15031048 Rev. D April 2013), 
except they were made in an automated high-throughput fashion using Perkin 
Elmer’s Sciclone G3 NGS Workstation (Product no. SG3-31020-0300). The 
ribosomal depletion step was performed on 1 μg of total RNA using Ribo-Zero 
Gold before a heat fragmentation step aimed at producing libraries with an 
insert size between 120–200 bp. cDNA was then synthesized from the enriched 
and fragmented RNA using SuperScript II Reverse Transcriptase (Invitrogen, 
Catalog no. 18064) and random primers. The resulting cDNA was converted 
into double-stranded DNA in the presence of dUTP to prevent subsequent 
amplification of the second strand and thus maintain the strandedness of 
the library. Following 3′ adenylation and adaptor ligation, libraries were sub-
jected to 15 cycles of PCR to produce RNA-seq libraries ready for sequencing. 
Prior to sequencing, RNA-seq libraries were qualified via the Perkin Elmer 
LabChip GX with the DNA High Sensitivity LabChip kit (Perkin Elmer, Part 
no. CLS760672). Quantification of libraries for clustering was performed using 
the KAPA Library Quantification Kit - Illumina/Universal (KAPA Biosystems, 
Part no. KK4824) in combination with the Life Technologies Viia 7 real time PCR  
instrument.
Library sequencing. All libraries were sequenced using the Illumina HiSeq 
2000/2500 system with TruSeq SBS Kit v3 - HS (200-cycles) reagents (Illumina, 
Part no. FC-401-3001), to generate paired-end 101 bp reads.
Sequence alignment and data management. Sequence data was mapped to the 
Genome Reference Consortium GRCh37 assembly using BWA42. All BAM files 
have been deposited in the EGA (accession number: EGAS00001000154).
Copy number analysis. Matched tumour and normal patient DNA was assayed 
using Illumina SNP BeadChips as per manufacturer’s instructions (Illumina, San 
Diego CA) (HumanOmni1-Quad or HumanOmni2.5–8 BeadChips) and analysed 
as previously described2,8.
Identification and verification of structural variants. The Somatic structural 
variant pipeline were identified using the qSV tool. A detailed description of its 
use has been recently published2,8.
Identification of and verification of point mutations. Substitutions and indels 
were called using a consensus calling approach that included qSNP, GATK and 
Pindel. The details of call integration and filtering, and verification using orthog-
onal sequencing and matched sample approaches are as previously described2,8,9. 
97% of KRAS mutations identified by KRAS deep-amplicon sequencing were 
detected via WGS and WES, inferring a false negative rate of 3% (Supplementary 
Table 1).
‘Lollipop’ plots. Plots showing the location and frequency of inactivating muta-
tions were generated using the MutationMapper web tool hosted at http://www.
cbioportal.org/. Available PanCancer mutation data was downloaded from the 
Cancer Genomic Data Server (CGDS) hosted by the Computational Biology 
Center (cBio) at the Memorial Sloan-Kettering Cancer Center (MSKCC) using 
the R package “cgdsr”29.
Mutational signatures. Mutational signatures were defined for genome-wide 
somatic substitutions, as previously described2.
Significantly mutated gene detection. A combination of three robust approaches 
were used to define significantly mutated genes: (i) MutSigCV2 (ref. 30), which 
detects genes with point mutations above the background mutation rate;  
(ii) OncodriverFM31, which detects point mutated genes with a bias towards path-
ogenic mutations; and (iii) HOTNET2 (ref. 32), which identifies sub-networks 
based on protein–protein interactions that contain recurrent point mutations,  
copy number alterations and structural rearrangements. The HotNet2 (HotNet 
diffusion-oriented subnetworks) algorithm was used to identify significantly 
mutated subnetworks in a genome-scale interaction network Heat scores for each 
protein were calculated as the number of samples having a non-silent SNV, indel, 
SV or copy number aberration in the corresponding gene32. Heat scores were  
limited to proteins having a corresponding gene mutation in ≥2% of samples.  
The iRefIndex interaction network was used for the analysis33. Supplementary 
Table 20 contains matrices summarizing all mutations, CNVs and SVs for all  
samples used in this study.
RNA sequencing library generation and sequencing. RNA-seq libraries were 
generated using TruSeq Stranded Total RNA (part no. 15031048 Rev. D April 2013) 
kits, using on a Perkin Elmer’s Sciclone G3 NGS Workstation (product no. SG3-
31020-0300). Ribosomal depletion step was performed on 1 μg of total RNA using 
Ribo-Zero Gold before a heat fragmentation step aimed at producing libraries with 
an insert size between 120–200 bp. cDNA was then synthesized from the enriched 
and fragmented RNA using Invitrogen’s SuperScript II Reverse Transcriptase 
(catalogue number 18064) and random primers. The resulting cDNA was fur-
ther converted into double stranded DNA in the presence of dUTP to prevent  
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subsequent amplification of the second strand and thus maintain the stranded-
ness of the library. Following 3′ adenylation and adaptor ligation libraries were 
subjected to 15 cycles of PCR to produce RNA-seq libraries ready for sequencing. 
Prior to sequencing, exome and RNA-seq libraries were qualified and quantified 
via Caliper’s LabChip GX (part no. 122000) instrument using the DNA High 
Sensitivity Reagent kit (product no. CLS760672). Quantification of libraries for 
clustering was performed using the KAPA Library Quantification Kits For Illumina 
sequencing platforms (kit code KK4824) in combination with Life Technologies 
Viia 7 real time PCR instrument.
RNA-seq analysis. Sequencing reads were mapped to transcripts corresponding to 
ensemble 70 annotations using RSEM34. RSEM data were normalized using TMM 
(weighted trimmed mean of M-values) as implemented in the R package ‘edgeR’. 
For downstream analyses, normalized RSEM data were converted to counts per 
million (c.p.m.) and log2 transformed35. Genes without at least 1 c.p.m. in 20% of 
the sample were excluded from further analysis.
RNA-seq re-analysis of Weismuller et al. RNA sequencing data reported in  
ref. 25 was downloaded from the Sequence Read Archive (SRA): Accession num-
ber; SRP033333. The available data was re-analysed using an RNA-seq pipeline 
implemented in the bcbio-nextgen project (https://bcbio-nextgen.readthedocs.org/
en/latest/). Briefly, after quality control and adaptor trimming, reads were aligned 
to the UCSC mouse mm10 genome build using STAR36 Counts for known genes 
were generated using the function featureCounts in the R/Bioconductor package 
“Rsubread”37. The R/Bioconductor package “DESeq2” was used to identify differ-
entially expressed genes38.
KRAS Trp53fl/+ and KRAS Trp53fl/+ Trp63fl/fl mouse derived cell lines. Cell 
lines were generated in house from pancreatic tumours harvested from Pdx1-Cre, 
LSL-KrasG12D/+, Trp53fl/+ mice or Pdx1-Cre, LSL-KrasG12D/+, Trp53fl/+, TAp63fl/fl 
mice described previously49. Low passage cell lines were used and authenticated 
by morphology. Mycoplasma testing confirmed that all cell lines were mycoplasma 
negative. Independently derived cell-lines representing either the KRAS Trp53fl/+  
(n = 3) or KRAS Trp53fl/+ Trp63fl/fl (n = 3) genotype were used for RNA-seq anal-
ysis. RNA-seq libraries were generated using the KAPA stranded RNaseq Kit with 
RiboErase (HMR) (KAPA Biosystems; kit ref. KR1151 – v3.15) according to the 
manufacturer’s instructions. Briefly, samples were fragmented for 6 min at 94 °C 
with 10 cycles of library amplification. Library quality control was performed using 
an Agilent BioAnalyzer 2100 in combination with a High Sensitivity DNA Kit 
(Agilent, Part no. 5067-4626). Samples were evenly pooled to a 2 nM concentration 
and a 1% PhiX control spike-in was used for sequencing quality control. Libraries 
were run on the NextSeq 500 platform according to the manufacturer’s instruc-
tions (Illumina, San Diego CA). Sequenced libraries were mapped to UCSC mouse 
mm10 genome build using TopHat and differential gene expression determined 
using Cufflinks 2.1.1 and Cuffdiff 2.1.1 as implemented in BaseSpace (https://
basespace.illumina.com/home/indexIllumina, San Diego CA).
Microarray analysis. Tumour RNA was assayed using HumanHT-12 v4 
Expression BeadChips as per manufacturer’s instructions (Illumina, San Diego 
CA) and analysed as previously described7. Batch correction was performed using 
the R package ‘sva’39.
Clustering. Non-negative matrix factorization (NMF) was employed to identify 
stable sample clusters40 The top 2,000 most variable genes were used as input. 
NMF parameters: Brunet algorithm; k = 1 to k = 7 clusters; number of clusterings 
to build consensus matrix = 20; error function = Euclidean; and 500 iterations. 
The preferred clustering result was determined using the observed cophenetic 
correlation between clusters and the average silhouette width of the consensus 
membership matrix as determined by the R package ‘cluster’. The R package 
‘ConsensusClusterPlus’41 was also employed to verify sample clustering. Similar 
sample clusters were obtained using both methods (data not shown). The pack-
age ‘ConsensusClusterPlus’ was also used to subtype PC samples according to the 
expression signatures defined in Moffitt et al.28

Differential gene expression (DGE). To identify the most representative samples 
within each cluster, we computed silhouette widths using the R ‘cluster’ package. 
Samples with positive silhouette widths were retained for DGE analysis. DGE  
analysis between representative samples was performed using the function ‘voom’ 
as implemented in the R package ‘edgeR’42. To define genes differentially expressed 
between all classes we used the function ‘sam’ as implemented in the R package 
‘siggenes’.
Gene sets. Gene sets representing immune cell-type expression markers and 
immune meta-genes were obtained from a recent publication24. Gene sets repre-
senting PDAC classes were generated by selecting significantly upregulated genes 
in a given class versus all other classes. An adjusted P value of 0.01 was used as the 
cut-off in each case.
Gene set enrichment. Gene set enrichment was performed using the R package 
‘GSVA’ (function gsva - arguments: method = “gsva”, mx.diff = TRUE)43. GSVA 
implements a non-parametric unsupervised method of gene set enrichment 

that allows an assessment of the relative enrichment of a selected pathway across 
the sample space. The output of GSVA is a gene-set by sample matrix of GSVA 
enrichment scores that are approximately normally distributed. GSVA enrichment 
scores were generated for each gene set using the transformed RSEM data unless 
otherwise indicated. For survival analyses, sample GSVA enrichment scores were 
stratified into quantiles (for example, lower 33% or upper 66% of values).
WGCNA. Weighted gene co-expression network analysis (WGCNA) was used to 
generate a transcriptional network from the normalized and transformed RSEM44. 
Briefly, WGCNA clusters genes into network modules using a topological overlap 
measure (TOM). The TOM is a highly robust measure of network interconnect-
edness and essentially provides a measure of the connection strength between two 
adjacent genes and all other genes in a network. Genes are clustered using 1-TOM 
as the distance measure and gene modules are defined as branches of the resulting 
cluster tree using a dynamic branch-cutting algorithm45.

The module eigengene is used as a measure of module expression in a given 
sample and is defined as the first principle component of a module. To relate sam-
ple traits of interest to gene modules, sample traits were correlated to module 
eigengenes and significance determined by a Student asymptotic P value for the 
given correlations. For gene module survival analyses, module eigengenes were 
stratified into quantiles (for example, lower 33% or upper 66% of values). To relate 
gene modules to PDAC classes, PDAC class gene set GSVA enrichment scores were 
used as sample traits and correlated with the module eigengenes as discussed above. 
Similarly, to relate the immune cell-type expression markers and immune meta-
genes to the gene modules each immune GSVA enrichment score was correlated 
with the module eigengenes as before.

To determine the enrichment of differentially expressed mouse genes in mod-
ules generated by WGCNA, mouse identifiers were first mapped to their corre-
sponding human HGCN Symbol using the R/Bioconductor package “biomaRt”. 
Module gene enrichment was then determined using the function userListEnrich-
ment in the WGCNA package. We considered, as significant, only those modules 
showing both significant enrichment and significant gene expression/gene module 
correlations.
Pathway analysis. Ontology and pathway enrichment analysis was performed 
using the R package ‘dnet’46 and/or the Reactome FI Cytoscape plugin 4.1.1  
(ref. 47) as indicated. The R package ‘dnet’ was also used to identify significant 
sub-networks of differentially expressed genes.
Pan-cancer 12 data and squamous assignment. Platform corrected input data was 
obtained from Synapse as part of the Pan-Cancer 12 data freeze (syn1715755)18. 
Pan-cancer 12 subtype assignments were also obtained from Synapse (syn1889916) 
and sample sizes, as indicated, used for statistical comparisons. To determine the 
relationship between the PDAC classes and the pan-cancer 12 subtypes, PDAC 
class gene sets were used in combination with the pan-cancer 12 expression data to 
generated GSVA enrichment scores as discussed above. Sample GSVA enrichment 
scores representing each PDAC class were then stratified according to the pan- 
cancer 12-subtype assignments. A Kruskal–Wallis test was applied to the stratified 
scores to determine whether the distributions differed.
Methylation analysis. Sample methylation was determined using Illumina 450K 
arrays as previously described7 with the following modifications. Probe-level 
Illumina GeneStudio output files were imported into R package ‘lumi’48 and data 
filtered to remove failed hybridizations, probes comprising SNPs and probes 
located on sex chromosomes. The filtered methylation values were then colour 
balance corrected and normalized using Shift and Scaling Normalization (SSN) 
as implemented by lumi. Gene methylation values were obtained by collapsing 
probe level values for a given gene loci (that is, probes located 1,500 bp upstream 
of the transcriptional start site (TSS) through to the end of transcription) using 
the function collapseRows(method = ”maxRowVariance”) from the package 
WGCNA44. Probes were mapped to gene loci using the R package “genomic-
Features”. Differential gene methylation between representative samples (selected 
as above under heading Differential gene expression (DGE)) was determined using 
the R package ‘limma’. M-values were used for differential gene methylation analy-
sis. Concordant changes in methylation and expression were calculated as follows. 
Probes were mapped to a given gene using the R package “genomicFeatures”. As 
above, probes located 1,500 bp upstream of the TSS through to the end of tran-
scription were considered for each gene. The correlation between a probe β-value 
and the corresponding gene log2 (CPM) expression value was then calculated using 
Pearson’s correlation coefficient. The statistical significance of each probe/gene 
correlation was calculated by permuting the data 10,000 times and comparing 
the correlation coefficients obtained before and after permutation. The resulting 
P values were adjusted for multiple testing using the approach of Benjamini and 
Hochberg.
Concordant copy number expression analysis. Analysis of variance was used 
to identify significant changes in gene expression between samples exhibiting 
corresponding gene copy number aberrations. Accordingly, gene expression  
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Extended Data Figure 1 | Mutational landscape of PC. a, Barplot 
representing the somatic mutation rate for each of the 456 samples 
included in this analysis. b, Non-silent mutations (blue), amplifications 
(≥8 copies, red), deletions (purple) and structural variants (SV, green) 
ranked in order of exclusivity. c, Significantly mutated genes identified by 
OncodriverFM. An asterisk denotes a significantly mutated gene identified 
by both MutSigCV and OncodriverFM. d, PC mutation functional 
interaction (FI) sub-network identified by the ReactomeFI cytoscape 

plugin. Mutated genes are indicated as coloured circles and linker genes 
(that is, genes not significantly mutated but highly connected to mutated 
genes in the network) indicated as coloured diamonds. Different node 
colours indicate different network clusters or closely interconnected 
genes. P values represent FDR < 0.05. Pathways significantly enriched in 
the identified FI sub-network are shown in the accompanying bar graph. 
Linker genes were not included in the enrichment analysis. Pie chart 
representing significantly altered genes and pathways in PC.
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Extended Data Figure 2 | Selected genomic events in PC. a, Lollipop 
plots showing the type and location of mutations in the RNA processing 
genes RBM10, SF3B1 and U2AF1 and the tumour suppressor TP53. In each 
plot, mutations observed across multiple cancers (top plot; PanCancer) are 
compared with those observed in the current study (bottom plot; PDAC). 
Significant recurrent mutations are labelled above the relevant lollipop.  
b, Regions of copy number alteration showing concordant gene expression 
changes. For each of the indicated chromosomes, significant GISTIC peaks 
are shown at their respective genomic locations (x axis) as grey bars. Each 
gene is represented by a dot at its specific chromosomal coordinate, with 

blue representing concordant copy number loss and gene downregulation 
and red representing concordant copy number amplification (copy 
number ≥ 8) and gene upregulation. Significance of concordant copy 
number/expression change is measured as a value of −log10 (q-value) 
times the sign of the direction of change. Dotted lines represent a 
significance threshold of −log10 (q-value = 0.05) times the sign of the 
direction of change. Genes showing concordant copy number/expression 
changes and overlapping GISTIC peaks are listed above the plot. Asterisk 
denotes known PC oncogenes showing amplification but non-significant 
concordant copy number/expression change.
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Extended Data Figure 3 | Classification of PC into 4 classes.  
a, Unsupervised classification of PC RNAseq using NMF. Solutions are 
shown for k = 2 to k = 7 classes. A peak cophenetic correlation is observed 
for k = 4 classes. b, Silhouette information for k = 4 classes. c–e, Boxplots 
representing QPURE, stromal signature scores and immune signature 
scores stratified by class. Boxplots are annotated by a Kruskall–Wallis 

P value. For comparisons the following sample sizes were used: ADEX 
(n = 16); immunogenic (n = 25); squamous (n = 25); and pancreatic 
progenitor (n = 30). f, Heatmap showing differential gene expression 
between classes. Samples with positive silhouette widths were retained for 
‘sam’ analysis. g, Heatmap showing overlap of the 4 classes identified in the 
current study and Collisson et al. classification27.
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Extended Data Figure 4 | Identification of 4 robust PC classes  
in 232 PCs with mixed low and high cellularity. a, Unsupervised 
classification of PC expression array data representing 232 samples 
using NMF. Solutions are shown for k = 2 to k = 7 classes. b, Silhouette 
information for k = 4 classes. c, Heatmap showing differential gene 
expression between classes. d, Boxplots representing QPURE, stromal 
signature scores and immune signature scores stratified by class.  

e, Boxplots representing ADEX, pancreatic progenitor, squamous and 
immunogenic signature scores defined using the RNA-seq PC set  
stratified by class. Boxplots in d and e are annotated by a Kruskall–Wallis 
P value. For comparisons the following sample sizes were used: ADEX 
(n = 49); immunogenic (n = 67); squamous (n = 71); and pancreatic 
progenitor (n = 45).
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Extended Data Figure 5 | Characterization of PC subtypes. a, Heatmap 
showing the statistical significance of correlations observed between the 
expressions of genes significantly expressed in each PC class and gene 
programmes identified by WGCNA. Pearson correlations and Student’s 
asymptotic P values are provided in each cell. b, Principal component 
analysis (PCA) using methylation data. Plot showing pairwise comparisons 
of samples distributed along the identified principle components (PC). 
Adjacent non-tumorous pancreatic samples represented as green points 
cluster as a distinct group. PC samples represented by points coloured 
brown (ADEX), blue (squamous), orange (pancreatic progenitor) and red 
(immunogenic) cluster together. c, Venn diagram showing the number 
of common and unique genes differentially methylated in the indicated 
PC subtypes when compared to adjacent non-tumorous pancreas. It 

is observed that distinct subsets of genes are differentially methylated 
in the 4 PC subtypes. d, Heatmap showing genes that are significantly 
methylated between tumours comprising the squamous class and all other 
classes. Methylation values for the same genes in adjacent non-tumorous 
pancreas are also shown. e–h, Plots showing regulation of gene expression 
by methylation. Hyper- or hypomethylation of the indicated probe is 
associated with either the concordant downregulation or upregulation of 
the indicated gene. Pearson correlation and adjusted P values are provided 
for each gene methylation comparison. Boxplot colours designate class: 
ADEX (brown); immunogenic (red); squamous (blue); and pancreatic 
progenitor (orange). Single letter designations representing the first letter 
of each class are provided under the relevant boxes in each plot.
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Extended Data Figure 6 | Core gene programmes (GP) defining the 
squamous class. Each panel shows from left to right: (i) a heatmap 
representing the genes in the specified gene programme most correlated 
with the indicated PC class with tumours ranked according to their gene 
programme module eigengene values (MEs) (PC classes are designated 
by colour as follows: ADEX (brown); pancreatic progenitor (orange); 

immunogenic (red); and squamous (blue)); (ii) Kaplan–Meier analysis 
comparing survival of patients having either high or low gene programme 
MEs; (iii) pathways significantly enriched in a given GP functional 
interaction (FI) sub-network defined by the ReactomeFI Cytoscape plugin. 
P values represent FDR < 0.05.
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Extended Data Figure 7 | Gene programme defining the pancreatic 
progenitor class. a, Panel showing from left to right: (i) a heatmap 
representing the genes in GP1 most correlated with the pancreatic 
progenitor class with tumours ranked according to their GP1 module 
eigengene values (MEs); (ii) Kaplan–Meier analysis comparing survival of 

patients having either high or low GP1 MEs; (iii) pathways significantly 
enriched in a GP1 FI sub-network defined by the ReactomeFI Cytoscape 
plugin. P values represent FDR <0.05. b, Network diagram depicting 
pathways significantly enriched in GP1 (FDR <0.0001). Different node 
colours indicate different network clusters or closely interconnected genes.
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Extended Data Figure 8 | Gene programmes defining the ADEX class. 
a, b, Panel showing from left to right: (i) a heatmap representing the genes 
in the specified GP most correlated with the ADEX class with tumours 
ranked according to their GP module eigengene values (MEs); (ii) Kaplan–
Meier analysis comparing survival of patients having either high or low GP 
MEs; (iii) pathways significantly enriched in a GP FI sub-network defined 
by the ReactomeFI Cytoscape plugin. P values represent FDR <0.05. 
c, Network diagram depicting pathways significantly enriched in GP9 

(FDR <0.0001). Different node colours indicate different network clusters 
or closely interconnected genes. Genes comprising GP9 are indicated as 
coloured circles, whereas linker genes (genes not comprising GP9 but 
forming multiple connections in the network) are indicated as coloured 
diamonds. d, Network diagram depicting pathways significantly enriched 
in GP10 (FDR <0.0001). Different node colours indicate different network 
clusters or closely interconnected genes.
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Extended Data Figure 9 | Stratification of PC RNASeq data  
according to Moffitt et al. a, Heatmap showing the stratification of the  
PC cohort of the current study using the tumour subtype classifier 
published in Moffitt et al.28. PCs were classified by consensus clustering 
using the top 50 weighted genes associated with the basal-like or classical 
subtypes. b, Boxplots showing the distribution of normal and activated 
stroma signature scores between the 4 PC classes identified in the current 
study. Boxplots are annotated by a Kruskall–Wallis P value. A significant 
difference in activated stroma signature scores was observed between 
squamous and ADEX tumours P value < 0.01 (t-test). Boxplot colours 
designate class: ADEX (brown); immunogenic (red); squamous (blue); 
and pancreatic progenitor (orange). c, Plots showing correlation between 
tumour cellularity, presented as a QPURE score, and either activated 
or normal stroma signature scores. Plots are annotated with Pearson 
correlation scores and significance values, with a linear fit represented by a 
solid line. Sample ICGC_0338, a rare acinar cell carcinoma is highlighted. 

This sample exhibits near 100% cellularity and has low activated or 
normal stroma signature scores. d, Principal component analysis (PCA) 
using methylation data. Plot showing pairwise comparisons of samples 
distributed along the identified principle components (PC). Adjacent 
non-tumorous pancreatic samples represented as green points cluster as 
a distinct group relative to ADEX samples (brown and red points). Rare 
acinar cell carcinomas (red) cluster with other ADEX samples (brown).  
All other PC samples are shown as grey points. e, Plot showing the  
correlation of expression of representative genes expressed in acinar 
cell carcinoma sample ICGC_0338 compared to the median expression 
of the same genes across all other ADEX samples. A red shaded region 
encompasses genes showing high median expression in all other ADEX 
but low expression in ICGC_0338. A brown shaded region encompasses 
genes showing high median expression in all other ADEX and correlatively 
high expression in ICGC_0338. Pearson’s correlation and significance are 
indicated.
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Extended Data Figure 10 | Gene programmes defining the 
immunogenic class. a–c, Each panel shows from left to right: (i) a 
heatmap representing the genes in the specified gene programme most 
correlated with the indicated PC class with tumours ranked according  
to their gene programme module eigengene values (MEs). PC  
classes are designated by colour as follows: ADEX (brown); pancreatic  
progenitor (orange); immunogenic (red); and squamous (blue);  
(ii) Kaplan–Meier analysis comparing survival of patients having either 
high or low gene programme MEs; (iii) pathways significantly enriched 

in a given GP functional interaction (FI) sub-network defined by the 
ReactomeFI Cytoscape plugin. Corresponding Cytoscape files comprising 
GP ReactomeFI subnetworks are provided. d, Boxplot of immune gene 
expression stratified by class. Boxplots are annotated by a Kruskall–Wallis 
P value and box colours designate class: ADEX (brown); immunogenic 
(red); squamous (blue); and pancreatic progenitor (orange). Single letter 
designations representing the first letter of each class are provided under 
the relevant boxes in each plot.
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